Effects of electrothermal vortices on insulator-based dielectrophoresis for circulating tumor cell separation.
نویسندگان
چکیده
Insulator-based dielectrophoresis (iDEP) is a powerful technique for separation and manipulation of bioparticles. In recent years, iDEP designs using arrays of insulating posts have shown promising results toward reaching high-efficiency bioparticle manipulation. Joule heating (JH) and electrothermal (ET) flows have been observed in iDEP microdevices and significantly affecting their performances. In this research, we utilize mathematical modeling to study, iDEP technique and the effects of JH and ET flow on device performance and propose a separation scenario for selective trapping of circulating tumor cells (CTCs). A robust numerical model is developed to calculate the distribution of electric and fluid flow fields in the presence of JH and ET flow, and predict the cells' trajectory inside the system. Our results indicate that JH not only induces temperature rise in the system, but also may alter the design iDEP separation scenario by inducing ET vortices that affect the cell's trajectory. To investigate the impact of JH-induced ET flow characteristics and vortex generation on separation efficiency, we introduce a dimensionless force ratio encompassing the effects of electrical field, drag forces, JH, and ET flow. Interestingly, it was found that ET flows can be used to significantly enhance the separation efficiency, even in higher inlet flow rates. Lastly, the effect of post geometry has been discussed.
منابع مشابه
Electrothermal flow effects in insulating (electrodeless) dielectrophoresis systems.
We simulate electrothermally induced flow in polymeric, insulator-based dielectrophoresis (iDEP) systems with DC-offset, AC electric fields at finite thermal Péclet number, and we identify key regimes where electrothermal (ET) effects enhance particle deflection and trapping. We study a single, two-dimensional constriction in channel depth with parametric variations in electric field, channel g...
متن کاملElectrothermal flow in Dielectrophoresis of Single-Walled Carbon Nanotubes
We theoretically investigate the impact of the electrothermal flow on the dielectrophoretic separation of single-walled carbon nanotubes (SWNT). The electrothermal flow is observed to control the motions of semiconducting SWNTs in a sizeable domain near the electrodes under typical experimental conditions, therefore helping the dielectrophoretic force to attract semiconducting SWNTs in a broade...
متن کاملThe effects of suspending medium on dielectrophoretic systems for separating and sorting carbon nanotubes
The separation of two different types of multi-walled carbon nanotubes is studied in a dielectrophoresis-based microchannel system in seven different solvents as the suspending medium. A simple model was developed to predict the behavior of the multi-walled carbon nanotubes in the above mentioned system. Then, the equations of motion for the multi-walled carbon nanotubes in that system were in...
متن کاملDC insulator dielectrophoretic applications in microdevice technology: a review.
Dielectrophoresis is a noninvasive, nondestructive, inexpensive, and fast technique for the manipulation of bioparticles. Recent advances in the field of dielectrophoresis (DEP) have resulted in new approaches for characterizing the behavior of particles and cells using direct current (DC) electric fields. In such approaches, spatial nonuniformities are created in the channel by embedding insul...
متن کاملSeparation of micro particle in microfluidic devices using insulator-based Dielectrophoresis mechanism
Separation of micro particle is an important issue in microfluidic devices. In this paper we present separation of 10 (um) and 15 (um) micro particles on one-step and multi-step insulator-Dielctrophorsis (iDEP) as numerically. For this purpose, Laplace and Navier-Stokes equations are solved with stationary-state. In following, particle trajectory was obtained with regarding dielectrophoresis an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electrophoresis
دوره 39 5-6 شماره
صفحات -
تاریخ انتشار 2018